Strong regularity of matrices in general max–min algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Regularity of Parametric Interval Matrices

We define strong regularity of a parametric interval matrix and give conditions that characterize it. The new conditions give a better estimation for regularity of a parametric matrix than the conditions used so far. Verifiable sufficient regularity conditions are also presented for parametric matrices. The new sufficient conditions motivate a generalization of Rump’s parametric fixed-point ite...

متن کامل

Strong Topological Regularity and Weak Regularity of Banach Algebras

In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...

متن کامل

Regularity of Matrices in Min-algebra and Its Time- Complexity

Let f~ = (G, ®, ~< ) be a linearly ordered, commutative group and (~ be defined by a ~ b = min(a, b) for all a, b e G. Extend (~, ® to matrices and vectors as in conventional linear algebra. An n x n matrix A with columns A1 ..... An is called regular if j~U j~V does not hold for any 21 ..... 2n ~ G, 0 =~ U, V ~ { 1, 2 ..... n}, U n V -0. We show that the problem of checking regularity is polyn...

متن کامل

A characterization of strong regularity of interval matrices

As the main result of this paper it is proved that an interval matrix [Ac −∆, Ac +∆] is strongly regular if and only if the matrix inequality M(I − |I − RAc| − |R|∆) ≥ I has a solution, where M and R are real square matrices and M is nonnegative. Several consequences of this result are drawn.

متن کامل

Strong Regularity of Matrices - A Survey of Results

Let Y = (G, @, I ) be a linearly ordered, commutative group and u@u = max(u, t’) for all u, IJEG. Extend 0, @ in the usual way on matrices over G. An m x n matrix A is said to have strongly linearly independent (SLI) columns, if for some b the system of equations A@x = b has a unique solution. If, moreover, m = n then A is said to be strongly regular (SR). This paper is a survey of results conc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2003

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(03)00462-2